%I #4 Dec 17 2013 20:28:37
%S 98,518,518,2792,4010,2792,15230,32496,32496,15230,83290,273318,
%T 405004,273318,83290,456328,2325194,5389600,5389600,2325194,456328,
%U 2500838,19931860,73564176,117016814,73564176,19931860,2500838,13709358
%N T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with every 2X2 subblock having the sum of the absolute values of the edge differences equal to 8 and no adjacent elements equal
%C Table starts
%C ........98..........518...........2792.............15230................83290
%C .......518.........4010..........32496............273318..............2325194
%C ......2792........32496.........405004...........5389600.............73564176
%C .....15230.......273318........5389600.........117016814...........2644508910
%C .....83290......2325194.......73564176........2644508910.........100717013560
%C ....456328.....19931860.....1020495508.......61446631860........3988055755936
%C ...2500838....171250610....14257498880.....1445209360978......161038431160850
%C ..13709358...1473829746...200008938060....34277771102530.....6580045857814054
%C ..75155340..12688761848..2811049435848...815537967438972...270517440197706674
%C .412023922.109290581878.39549756517288.19458666839438514.11161397147896311964
%H R. H. Hardin, <a href="/A233928/b233928.txt">Table of n, a(n) for n = 1..144</a>
%F Empirical for column k:
%F k=1: a(n) = 6*a(n-1) +5*a(n-2) -46*a(n-3) +5*a(n-4) +60*a(n-5) +20*a(n-6)
%F k=2: [order 25]
%F k=3: [order 82]
%e Some solutions for n=2 k=4
%e ..3..4..2..4..3....1..0..3..2..4....2..4..3..4..1....1..0..1..0..2
%e ..0..1..0..1..0....0..3..4..0..3....0..2..0..3..4....0..3..0..3..4
%e ..2..4..3..0..3....1..0..2..1..4....3..4..2..4..1....3..4..3..4..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 17 2013