login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 5*binomial(6*n+10,n)/(3*n+5).
4

%I #20 Sep 08 2022 08:46:06

%S 1,10,105,1170,13640,164502,2036265,25727800,330482295,4303216330,

%T 56672074888,753573733050,10103474312100,136435868978220,

%U 1854009194816745,25333847134998864,347880174736462550,4798137522234602700,66441427922465470095,923346006310186106010,12873823246049001482400

%N a(n) = 5*binomial(6*n+10,n)/(3*n+5).

%C Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=6, r=10.

%H Vincenzo Librandi, <a href="/A233830/b233830.txt">Table of n, a(n) for n = 0..200</a>

%H J-C. Aval, <a href="http://arxiv.org/pdf/0711.0906v1.pdf">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.

%H Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a>

%H Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955.

%F G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=6, r=10.

%F From _Ilya Gutkovskiy_, Sep 14 2018: (Start)

%F E.g.f.: 6F6(5/3,11/6,2,13/6,7/3,5/2; 1,11/5,12/5,13/5,14/5,3; 46656*x/3125).

%F a(n) ~ 3^(6*n+19/2)*4^(3*n+5)/(sqrt(Pi)*5^(5*n+19/2)*n^(3/2)). (End)

%t Table[5 Binomial[6 n + 10, n]/(3 n + 5), {n, 0, 30}]

%o (PARI) a(n) = 5*binomial(6*n+10,n)/(3*n+5);

%o (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/5))^10+x*O(x^n)); polcoeff(B, n)}

%o (Magma) [5*Binomial(6*n+10, n)/(3*n+5): n in [0..30]];

%Y Cf. A000108, A002295, A212071, A212072, A212073, A130564, A233743, A233827, A233829.

%K nonn

%O 0,2

%A _Tim Fulford_, Dec 16 2013