|
|
A233747
|
|
Numbers n such that n+k, n+k^2 and n+k^4, are all prime, where k=4.
|
|
1
|
|
|
1, 7, 13, 15, 25, 27, 37, 55, 57, 93, 97, 123, 133, 163, 175, 177, 207, 223, 235, 247, 253, 265, 267, 343, 363, 385, 405, 417, 427, 445, 463, 483, 487, 505, 553, 583, 597, 603, 627, 735, 753, 757, 793, 805, 807, 925, 937, 967, 993, 1035, 1045, 1047, 1177, 1197
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
K. D. Bajpai, Table of n, a(n) for n = 1..5250
|
|
EXAMPLE
|
13 is in the sequence because 13+4= 17, 13+4^2= 29, 13+4^4= 269, are all prime.
27 is in the sequence because 27+4= 31, 27+4^2= 43, 27+4^4= 283, are all prime.
|
|
MAPLE
|
KD := proc() local a, b, d, k; k:=4; a:=n+k; b:=n+k^2; d:=n+k^4; if isprime(a)and isprime(b) and isprime(d) then RETURN (n); fi; end: seq(KD(), n=1..10000);
|
|
CROSSREFS
|
Cf. A000040 (the prime numbers).
Sequence in context: A293576 A233301 A274255 * A279831 A102797 A233062
Adjacent sequences: A233744 A233745 A233746 * A233748 A233749 A233750
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
K. D. Bajpai, Dec 15 2013
|
|
STATUS
|
approved
|
|
|
|