%I
%S 164860,7442986,7461298,336085716,1062275284,328460622,15181195220,
%T 153005653333,144297443044,14427107117,684540459662,22080932709668,
%U 64757179869158,19467107789537,631613667020,30867953018180
%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no increasing sequence of length 3 horizontally, vertically, diagonally downwards or antidiagonally downwards
%C Table starts
%C .......164860..........7442986............336085716.............15181195220
%C ......7461298.......1062275284.........153005653333..........22080932709668
%C ....328460622.....144297443044.......64757179869158.......29152990437729687
%C ..14427107117...19467107789537....27085905767473141....37843512136217016443
%C .631613667020.2609997970924906.11212752865793034944.48410484594138550226073
%H R. H. Hardin, <a href="/A233705/b233705.txt">Table of n, a(n) for n = 1..40</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 70]
%F Empirical for row n:
%F n=1: [linear recurrence of order 88] for n>90
%e Some solutions for n=1 k=4
%e ..0..0..0..0..0..3....0..0..0..0..1..1....0..0..0..0..0..2....0..0..0..0..0..1
%e ..0..0..0..0..0..1....0..0..0..0..0..1....0..0..0..0..2..1....0..0..0..0..2..2
%e ..2..1..3..0..3..1....3..0..3..1..2..0....1..0..0..1..1..1....1..1..2..2..1..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 15 2013
