%I #4 Nov 30 2013 18:56:36
%S 4,16,16,216,312,64,710,6664,3720,240,3648,67718,168688,44832,988,
%T 25642,1051216,4836036,5659896,500516,3964,139456,17686598,202470104,
%U 391884166,179149960,5809256,15844,683250,265341016,8873311108,45851030856
%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally, diagonally or antidiagonally
%C Table starts
%C .......4...........16.............216...............710...............3648
%C ......16..........312............6664.............67718............1051216
%C ......64.........3720..........168688...........4836036..........202470104
%C .....240........44832.........5659896.........391884166........45851030856
%C .....988.......500516.......179149960.......32297599754.....10331973738132
%C ....3964......5809256......5458025808.....2586501812600...2255412540732792
%C ...15844.....71242892....172736599272...210721854104134.504907550840069764
%C ...63808....828231244...5399804456824.17102998113711722
%C ..256096...9665239984.168429228245712
%C .1029152.115029333056
%H R. H. Hardin, <a href="/A232839/b232839.txt">Table of n, a(n) for n = 1..71</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1) +10*a(n-2) +11*a(n-3) -a(n-4) -28*a(n-5) -32*a(n-6)
%F k=2: [order 13]
%F k=3: [order 38]
%F Empirical for row n:
%F n=1: [linear recurrence of order 8]
%F n=2: [order 33]
%e Some solutions for n=3 k=4
%e ..0..2..1..0..0....0..1..2..1..2....0..2..1..0..2....0..1..2..1..2
%e ..0..1..2..1..1....0..1..1..0..0....0..1..0..1..0....0..1..0..1..2
%e ..0..2..2..2..2....0..0..2..2..1....0..0..2..1..2....0..1..1..0..2
%e ..1..0..1..1..0....0..1..0..0..1....0..1..1..2..2....0..2..2..1..0
%Y Column 1 is A232425
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 30 2013