login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (4+1)X(n+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal
1

%I #4 Nov 26 2013 18:09:13

%S 6,456,122,6406,3002,93236,68072,1364998,1320362,20063788,24123134,

%T 296095446,423016306,4386696696,7216047494,65227876552,120687373030,

%U 973264614932,1988957705626,14569296892014,32409581296990

%N Number of (4+1)X(n+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or antidiagonally, with no adjacent elements equal

%C Row 4 of A232589

%H R. H. Hardin, <a href="/A232593/b232593.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 20*a(n-2) +16*a(n-3) -92*a(n-4) -260*a(n-5) +82*a(n-6) +1038*a(n-7) +1278*a(n-8) -1350*a(n-9) -4927*a(n-10) -3536*a(n-11) +5500*a(n-12) +12930*a(n-13) +8739*a(n-14) -8650*a(n-15) -22849*a(n-16) -24728*a(n-17) -3836*a(n-18) +33686*a(n-19) +62865*a(n-20) +36392*a(n-21) -44749*a(n-22) -110478*a(n-23) -67221*a(n-24) +47184*a(n-25) +126718*a(n-26) +76044*a(n-27) -30029*a(n-28) -98898*a(n-29) -68985*a(n-30) +2372*a(n-31) +49486*a(n-32) +46722*a(n-33) +19080*a(n-34) -1646*a(n-35) -13297*a(n-36) -15236*a(n-37) -12882*a(n-38) -4684*a(n-39) +949*a(n-40) +3512*a(n-41) +2385*a(n-42) +1194*a(n-43) +233*a(n-44) -6*a(n-45) -67*a(n-46) -18*a(n-47) -2*a(n-48) +2*a(n-49) for n>54

%e Some solutions for n=5

%e ..0..1..0..2..1..0....2..1..0..1..2..1....2..1..0..1..2..0....0..1..0..2..1..0

%e ..2..1..0..2..1..0....2..1..2..1..0..1....0..1..2..0..1..2....2..1..0..2..1..2

%e ..0..2..1..2..1..2....2..1..2..1..2..1....0..1..2..0..1..2....0..2..1..2..1..0

%e ..1..0..1..2..1..0....0..1..2..1..0..2....2..0..1..0..1..0....1..0..1..0..1..0

%e ..1..2..1..0..1..2....2..1..0..2..1..0....1..2..1..2..1..2....1..2..1..2..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 26 2013