login
Number of (n+1)X(5+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order
1

%I #4 Nov 19 2013 08:08:23

%S 6468,2616952,1063744484,433383414596,176569302110496,

%T 71938229899528156,29309235951462780764,11941235467361717495452,

%U 4865125280955877875502856,1982160394270679198811981452,807576290792538717988018624964

%N Number of (n+1)X(5+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order

%C Column 5 of A232137

%H R. H. Hardin, <a href="/A232134/b232134.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 561*a(n-1) -73140*a(n-2) +4741713*a(n-3) -189590243*a(n-4) +5166741030*a(n-5) -101404015378*a(n-6) +1481747635516*a(n-7) -16476516135731*a(n-8) +141802609562487*a(n-9) -960379067630908*a(n-10) +5207827691109751*a(n-11) -22965923908030370*a(n-12) +83424252857795943*a(n-13) -252125730302308846*a(n-14) +638719837675651150*a(n-15) -1364105336060855188*a(n-16) +2468073823021873449*a(n-17) -3803666086866956608*a(n-18) +5031007274209568576*a(n-19) -5774992822154852288*a(n-20) +5840357323644746240*a(n-21) -5289580945576167424*a(n-22) +4336919045252018176*a(n-23) -3211173022706860032*a(n-24) +2114909947423555584*a(n-25) -1214396287189254144*a(n-26) +594076082478514176*a(n-27) -239111167128109056*a(n-28) +75437217383710720*a(n-29) -17717117784686592*a(n-30) +2944599513366528*a(n-31) -325009838964736*a(n-32) +21251498180608*a(n-33) -618475290624*a(n-34) for n>36

%e Some solutions for n=1

%e ..0..1..2..0..2..2....0..1..2..1..2..0....0..1..0..0..2..0....0..1..0..2..1..0

%e ..2..0..1..0..0..2....2..0..1..0..2..0....2..1..1..0..2..0....2..0..1..2..2..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 19 2013