login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232124 T(n,k) = Number of (n+1) X (k+1) 0..2 arrays with every element both >= and <= some horizontal or vertical neighbor. 8

%I

%S 15,109,109,611,1667,611,3635,26029,26029,3635,21717,411015,1060647,

%T 411015,21717,129323,6462505,44229031,44229031,6462505,129323,770747,

%U 101738935,1841606457,4894583715,1841606457,101738935,770747,4593729

%N T(n,k) = Number of (n+1) X (k+1) 0..2 arrays with every element both >= and <= some horizontal or vertical neighbor.

%C Table starts

%C ......15.........109.............611...............3635..................21717

%C .....109........1667...........26029.............411015................6462505

%C .....611.......26029.........1060647...........44229031.............1841606457

%C ....3635......411015........44229031.........4894583715...........539351064745

%C ...21717.....6462505......1841606457.......539351064745........157357630962031

%C ..129323...101738935.....76671235227.....59455853081501......45923654534440885

%C ..770747..1601238913...3192300139421...6554255427911017...13402622472944146617

%C .4593729.25202545399.132915745358065.722517279545733561.3911492760590744026197

%H R. H. Hardin, <a href="/A232124/b232124.txt">Table of n, a(n) for n = 1..112</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 9].

%F k=2: [order 35].

%e Some solutions for n=2, k=4

%e ..0..0..0..2..2....0..0..0..0..0....0..0..0..1..1....0..0..0..2..2

%e ..0..1..2..0..0....0..0..2..2..2....0..1..0..0..2....1..1..2..1..1

%e ..1..1..2..2..2....0..0..1..1..1....0..1..1..2..2....0..0..2..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 19 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 07:40 EDT 2022. Contains 357085 sequences. (Running on oeis4.)