%I
%S 16,4,3,5,6,1
%N Number of iterations of A032445 ("position of n in Pi") until a value is reached for the second time, when starting with n, or 1 if no value is repeated.
%C See A232013 for a variant based on A176341 instead of A032445.
%C Some loops: (5), (271070), (9292071), (40, 71), (2, 7, 14), (296, 1060, 13737, 133453, 646539, 294342, 141273).  _Hans Havermann_, Jul 26 2014
%C See Hans Havermann table (in links) for primary unknownlength evolutions.  _Hans Havermann_, Aug 06 2014
%H David G. Andersen, <a href="http://www.angio.net/pi">Loop Sequences within Pi, on The PiSearch Page</a> (Search 2*10^8 decimal digits of Pi).
%H Hans Havermann, <a href="http://chesswanks.com/seq/a232014.txt">Information table of n, a(n) for n=0..100</a>.
%H Joaquin Navarro, <a href="http://images.math.cnrs.fr/LessecretsdunombrePi.html">Les secrets du nombre Pi</a> (Book review, in French).
%H James Taylor, <a href="http://www.subidiom.com/pi/">Irrational Numbers Search Engine</a> (Search 2*10^9 decimal digits of Pi).
%H Ady Tzidon, <a href="http://perplexus.info/show.php?pid=7746&op=sol">Loops in Pi</a>.
%e a(1)=4 since A032445(1)=2 (the first "1" occurs after the initial "3" as second digit in Pi), A032445(2)=7 (the first "2" occurs as 7th digit of Pi's decimal expansion), A032445(7)=14, A032445(14)=2, which "closes the loop" after 4 iterations. (The initial value does not need to be part of the loop.)
%o (PARI) A232014(n)={my(u=0);for(i=1,9e9,u+=1<<n;bittest(u,n=A032445(n))&&return(i))}
%K nonn,base,more
%O 0,1
%A _M. F. Hasler_, Nov 16 2013
%E Definition modified by _N. J. A. Sloane_, Jul 29 2014
