%I #4 Nov 16 2013 13:41:20
%S 9,32,121,406,1225,3916,12769,41180,131769,423168,1361889,4378942,
%T 14070001,45221064,145371249,467284392,1501950025,4827700176,
%U 15517934041,49879756014,160328968921,515348072772,1656495128401,5324506601820
%N Number of (2+1)X(n+1) 0..1 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to one
%C Row 2 of A231997
%H R. H. Hardin, <a href="/A231999/b231999.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) -3*a(n-2) +11*a(n-3) +5*a(n-4) -7*a(n-5) +11*a(n-6) -35*a(n-7) -11*a(n-8) +9*a(n-9) -5*a(n-10) +13*a(n-11) +3*a(n-12) -a(n-13) +a(n-14) -a(n-15)
%e Some solutions for n=7
%e ..0..0..0..0..1..0..0..1....0..0..0..0..1..0..0..0....0..0..0..0..0..0..0..0
%e ..0..0..0..0..0..0..0..0....1..1..0..0..0..1..0..1....1..1..0..0..0..0..0..0
%e ..0..0..1..0..0..0..0..0....0..0..0..0..1..0..0..0....0..0..1..0..0..0..0..1
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 16 2013