login
Number of nX4 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions)
2

%I #4 Nov 14 2013 13:53:08

%S 8,144,7339,360966,17726611,870478586,42745416641,2099041399895,

%T 103074789422478,5061554394805698,248550911791818706,

%U 12205253749015192168,599346902427518296059,29431318417158665841585

%N Number of nX4 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions)

%C Column 4 of A231855

%H R. H. Hardin, <a href="/A231851/b231851.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 62*a(n-1) -697*a(n-2) +3287*a(n-3) -7718*a(n-4) +9336*a(n-5) -5629*a(n-6) +1612*a(n-7) -184*a(n-8) +4*a(n-9) for n>10

%e Some solutions for n=3

%e ..0..0..2..1....0..0..2..2....0..2..2..1....0..0..2..1....0..0..2..1

%e ..2..2..1..2....1..1..0..0....2..1..1..1....1..1..1..1....1..2..1..1

%e ..0..1..2..2....0..0..0..0....0..0..0..0....1..2..0..0....2..0..2..2

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 14 2013