%I #4 Nov 13 2013 10:27:38
%S 3,74,854,9892,115110,1339532,15587828,181392458,2110829288,
%T 24563317752,285838643356,3326249767890,38706934038034,
%U 450425207672442,5241512218541580,60994477815724568,709781103027952810
%N Number of nX3 0..2 arrays with no element having a strict majority of its horizontal and vertical neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions)
%C Column 3 of A231785
%H R. H. Hardin, <a href="/A231780/b231780.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 14*a(n-1) -22*a(n-2) -76*a(n-3) +119*a(n-4) +271*a(n-5) -326*a(n-6) -446*a(n-7) +265*a(n-8) +184*a(n-9) +336*a(n-10) -2*a(n-11) +184*a(n-12) -359*a(n-13) +287*a(n-14) -299*a(n-15) -38*a(n-16) -45*a(n-17) +26*a(n-18) -8*a(n-19) -6*a(n-20) -2*a(n-21) for n>22
%e Some solutions for n=5
%e ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0
%e ..0..2..1....2..2..2....1..2..0....0..0..0....0..2..1....2..2..0....2..1..2
%e ..2..1..1....1..0..2....1..1..0....2..2..2....1..1..1....2..2..0....1..1..1
%e ..1..1..1....1..1..1....1..1..0....2..2..2....2..1..2....1..1..2....1..1..1
%e ..0..0..2....0..0..0....0..0..0....0..1..1....1..1..2....1..1..2....1..2..1
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 13 2013
|