login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

T(n,k)=Number of nXk 0..2 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors
7

%I #4 Nov 13 2013 06:04:44

%S 3,3,3,9,15,9,22,51,51,22,51,186,589,186,51,121,687,5106,5106,687,121,

%T 292,2485,41288,101517,41288,2485,292,704,9068,397219,1787168,1787168,

%U 397219,9068,704,1691,33308,3745096,36596191,67411714,36596191,3745096

%N T(n,k)=Number of nXk 0..2 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors

%C Table starts

%C ....3......3..........9............22................51................121

%C ....3.....15.........51...........186...............687...............2485

%C ....9.....51........589..........5106.............41288.............397219

%C ...22....186.......5106........101517...........1787168...........36596191

%C ...51....687......41288.......1787168..........67411714.........2966010838

%C ..121...2485.....397219......36596191........2966010838.......309458955366

%C ..292...9068....3745096.....764681711......131956285636.....31638510266609

%C ..704..33308...34036486...15421779553.....5669387332934...3041193156650724

%C .1691.121445..313782748..309633476778...243573416110820.296576264769131499

%C .4059.444183.2927905037.6284893573378.10555475178328001

%H R. H. Hardin, <a href="/A231753/b231753.txt">Table of n, a(n) for n = 1..112</a>

%F Empirical for column k:

%F k=1: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5) for n>6

%F k=2: [order 11]

%F k=3: [order 40] for n>41

%e Some solutions for n=4 k=4

%e ..1..0..1..1....1..0..0..0....2..0..0..2....2..2..0..0....0..0..2..2

%e ..0..0..0..2....0..0..0..1....1..0..0..0....1..0..0..0....0..1..0..0

%e ..0..0..1..0....1..0..0..1....2..0..0..0....0..1..0..0....2..0..0..0

%e ..1..0..0..0....1..0..0..0....2..1..0..0....0..0..0..1....2..0..0..0

%Y Column 1 is A202882 for n>1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 13 2013