%I
%S 0,9,36,144,169,225,441,576,676,729,900,1369,1764,2025,2209,2304,2704,
%T 2809,2916,3249,3600,3721,3969,4761,5329,5476,6561,6889,7056,8100,
%U 8649,8836,9216,9801,10816,11025,11236,11449,11664,11881,12321,12996,13225,14161,14400,14884,15129,15876,17689,18769,19044,19881,21316,21904
%N Evil squares.
%C Numbers n^2 such that A159918(n) is even.
%C Intersection of A000290 and A001969.
%H Amiram Eldar, <a href="/A231431/b231431.txt">Table of n, a(n) for n = 1..10000</a>
%F Conjecture: a(n) ~ 4n^2.  _Charles R Greathouse IV_, Nov 20 2013
%e 36 is in the sequence because 36 = 6^2 and 36 in base 2 is 100100, having an even number of 1's.
%t Select[Range[0,150]^2,EvenQ[DigitCount[#,2,1]]&] (* _Harvey P. Dale_, Nov 23 2015 *)
%o (PARI) is(n)=hammingweight(n)%2==0 && issquare(n) \\ _Charles R Greathouse IV_, Nov 20 2013
%Y Cf. A000290, A125498.
%K nonn,base,easy
%O 1,2
%A _JuriStepan Gerasimov_, Nov 20 2013
%E Corrected and extended by _Harvey P. Dale_, Nov 23 2015
