login
Number of (3+1)X(n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order
1

%I #5 Aug 11 2014 22:45:55

%S 7,15,100,311,1706,7844,35696,184692,873979,4399412,22162876,

%T 110261498,564140421,2850848402,14542997263,74409026027,380043653506,

%U 1950717998012,10003505335070,51373261673575,264098740804503,1357567141208027

%N Number of (3+1)X(n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order

%C Row 3 of A231396

%H R. H. Hardin, <a href="/A231399/b231399.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A231399/a231399.txt">Empirical recurrence of order 83</a>

%F Empirical recurrence of order 83 (see link above)

%e Some solutions for n=4

%e ..0..0..0..0..0....0..0..0..1..1....0..0..0..1..1....0..1..0..1..0

%e ..0..0..0..1..1....0..0..0..0..1....0..0..0..1..1....1..0..1..0..1

%e ..2..2..1..1..1....0..0..0..1..0....0..0..0..1..1....0..1..0..1..1

%e ..2..2..2..1..1....1..1..1..0..1....0..0..0..0..1....1..0..1..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 08 2013