login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X 3 0..3 arrays x(i,j) with each element horizontally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4, and upper left element zero.
1

%I #9 Sep 28 2018 06:57:58

%S 0,2,8,66,400,2722,17688,117026,768800,5064642,33328168,219411586,

%T 1444225200,9506897762,62579419448,411934939746,2711589889600,

%U 17849253534082,117494042259528,773413479117506,5091052634882000

%N Number of n X 3 0..3 arrays x(i,j) with each element horizontally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4, and upper left element zero.

%H R. H. Hardin, <a href="/A231280/b231280.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) + 17*a(n-2).

%F Conjectures from _Colin Barker_, Sep 28 2018: (Start)

%F G.f.: 2*x^2 / (1 - 4*x - 17*x^2).

%F a(n) = ((2-sqrt(21))^n*(2+sqrt(21)) + (-2+sqrt(21))*(2+sqrt(21))^n)/(17*sqrt(21)).

%F (End)

%e Some solutions for n=3:

%e ..0..1..0....0..1..2....0..1..0....0..1..2....0..1..2....0..1..2....0..1..0

%e ..2..3..2....0..3..0....2..3..0....2..3..0....0..3..2....2..3..2....2..3..2

%e ..0..1..0....2..1..0....2..1..0....2..1..0....2..1..0....0..1..0....2..1..0

%Y Column 3 of A231285.

%K nonn

%O 1,2

%A _R. H. Hardin_, Nov 06 2013