login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + x) / (1 - k*x - x^2).
3

%I #17 Nov 08 2014 19:38:48

%S 1,1,4,18,104,736,6232,61632,698144,8917120,126807520,1987075872,

%T 34018221728,631698903712,12645901972000,271482140140704,

%U 6221487421328672,151587364647728032,3912949321334320672,106670353381399285920,3062317963564624162592,92345208262957730327968

%N G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + x) / (1 - k*x - x^2).

%C Compare to the identity:

%C Sum_{n>=0} x^n*Product_{k=1..n} -(k + x)/(1 - k*x - x^2) = 1 - x.

%C Compare also to the identity:

%C Sum_{n>=0} x^n*Product_{k=1..n} (k + x)/(1 + k*x + x^2) = (1+x^2)/(1-x).

%H Vaclav Kotesovec, <a href="/A231274/b231274.txt">Table of n, a(n) for n = 0..268</a>

%F a(n) ~ n! / (2 * (log(2))^(n+1)). - _Vaclav Kotesovec_, Oct 31 2014

%e G.f.: A(x) = 1 + x + 4*x^2 + 18*x^3 + 104*x^4 + 736*x^5 + 6232*x^6 +...

%e where

%e A(x) = 1 + x*(1+x)/(1-x-x^2) + x^2*(1+x)*(2+x)/((1-x-x^2)*(1-2*x-x^2)) + x^3*(1+x)*(2+x)*(3+x)/((1-x-x^2)*(1-2*x-x^2)*(1-3*x-x^2)) + x^4*(1+x)*(2+x)*(3+x)*(4+x)/((1-x-x^2)*(1-2*x-x^2)*(1-3*x-x^2)*(1-4*x-x^2)) +...

%o (PARI) {a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (k+x)/(1-k*x-x^2 +x*O(x^n))) ), n)}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A231352, A231291.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 06 2013