login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (2*k - x) / (1 - 2*k*x).
2

%I #13 Nov 03 2014 02:49:24

%S 1,2,11,96,1117,16226,282503,5732736,132852169,3461582882,

%T 100170007859,3187366835040,110607201645061,4157078373725762,

%U 168223595493553871,7292428324945552896,337148168449629548497,16559308764450704877506,861070129828668874777883

%N G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (2*k - x) / (1 - 2*k*x).

%C Compare to a g.f. of Pell numbers (A000129):

%C Sum_{n>=0} x^n * Product_{k=1..n} (2*k + x)/(1 + 2*k*x) = 1/(1-2*x-x^2).

%C Limit n->infinity A231229(n) / A231277(n) = 2. - _Vaclav Kotesovec_, Nov 02 2014

%H Vaclav Kotesovec, <a href="/A231229/b231229.txt">Table of n, a(n) for n = 0..282</a>

%F Self-convolution square-root yields A231277.

%F a(n) == (n+1) (mod 4).

%F a(n) ~ 2^(n-1) * n! / (log(2))^(n+1). - _Vaclav Kotesovec_, Nov 02 2014

%e G.f.: A(x) = 1 + 2*x + 11*x^2 + 96*x^3 + 1117*x^4 + 16226*x^5 + 282503*x^6 +...

%e where

%e A(x) = 1 + x*(2-x)/(1-2*x) + x^2*(2-x)*(4-x)/((1-2*x)*(1-4*x)) + x^3*(2-x)*(4-x)*(6-x)/((1-2*x)*(1-4*x)*(1-6*x)) + x^4*(2-x)*(4-x)*(6-x)*(8-x)/((1-2*x)*(1-4*x)*(1-6*x)*(1-8*x)) +...

%e The g.f. equals the square of an integer series (A231277):

%e A(x)^(1/2) = 1 + x + 5*x^2 + 43*x^3 + 503*x^4 + 7395*x^5 + 130417*x^6 + 2677347*x^7 + 62652163*x^8 + 1645424927*x^9 + 47918249503*x^10 +...

%e because the g.f. A(x) is congruent to 1/(1-x)^2 modulo 4.

%o (PARI) {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, (2*k-x)/(1-2*k*x +x*O(x^n)))), n)}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A231172, A231277.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Nov 05 2013