Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Nov 05 2013 07:20:16
%S 9,67,67,538,1413,538,4264,31665,31665,4264,33868,704428,2001156,
%T 704428,33868,268936,15698874,125862699,125862699,15698874,268936,
%U 2135636,349736292,7925306181,22370911245,7925306181,349736292,2135636,16959144
%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with values 0..2 introduced in row major order
%C Table starts
%C .......9.........67............538...............4264.................33868
%C ......67.......1413..........31665.............704428..............15698874
%C .....538......31665........2001156..........125862699............7925306181
%C ....4264.....704428......125862699........22370911245.........3979620300917
%C ...33868...15698874.....7925306181......3979620300917......2000159147569783
%C ..268936..349736292...498915418541....707803712206189...1005095606724544160
%C .2135636.7791727354.31409217221246.125892415174551558.505085343218758535024
%H R. H. Hardin, <a href="/A231199/b231199.txt">Table of n, a(n) for n = 1..97</a>
%F Empirical for column k:
%F k=1: a(n) = 8*a(n-1) -4*a(n-3) +4*a(n-4) -12*a(n-5) -16*a(n-6)
%F k=2: [order 18]
%F k=3: [order 62]
%e Some solutions for n=1 k=4
%e ..0..1..2..2..1....0..0..1..2..0....0..1..1..2..2....0..0..0..1..0
%e ..0..1..0..1..2....2..0..0..0..2....0..1..0..0..0....1..1..2..1..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 05 2013