%I
%S 9,67,538,4264,33868,268936,2135636,16959144,134673104,1069443392,
%T 8492483984,67439085424,535535922336,4252707792768,33770887846016,
%U 268175694518400,2129591719896640,16911155582525312,134292024365242368
%N Number of (n+1) X (1+1) 0..2 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with values 0..2 introduced in row major order.
%H R. H. Hardin, <a href="/A231192/b231192.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 8*a(n1)  4*a(n3) + 4*a(n4)  12*a(n5)  16*a(n6).
%F Empirical g.f.: x*(9  5*x + 2*x^2  4*x^3  12*x^4  16*x^5) / (1  8*x + 4*x^3  4*x^4 + 12*x^5 + 16*x^6).  _Colin Barker_, Sep 27 2018
%e Some solutions for n=5:
%e ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..0....0..1
%e ..2..2....2..2....2..2....1..0....1..0....2..2....0..1....2..0....1..2....1..2
%e ..0..0....0..0....2..0....2..0....0..0....0..2....0..0....2..0....2..0....1..2
%e ..2..1....2..1....0..2....1..2....2..1....2..0....2..2....0..2....1..0....1..0
%e ..0..0....1..0....2..0....2..2....2..2....0..2....0..0....0..2....0..2....0..1
%e ..2..2....2..2....1..0....1..0....0..0....0..2....1..1....1..0....0..2....2..1
%Y Column 1 of A231199.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 05 2013
