login
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with upper left element zero
7

%I #4 Nov 04 2013 08:07:53

%S 18,100,100,570,1470,570,3234,22870,22870,3234,18376,352444,966000,

%T 352444,18376,104386,5441634,40511376,40511376,5441634,104386,593022,

%U 83985430,1701515682,4626094668,1701515682,83985430,593022,3368932

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with upper left element zero

%C Table starts

%C ......18.........100.............570...............3234..................18376

%C .....100........1470...........22870.............352444................5441634

%C .....570.......22870..........966000...........40511376.............1701515682

%C ....3234......352444........40511376.........4626094668...........529060553286

%C ...18376.....5441634......1701515682.......529060553286........164741494324216

%C ..104386....83985430.....71441888932.....60486059723578......51281497817007082

%C ..593022..1296319964...2999853495524...6915679126693682...15964241855641274098

%C .3368932.20008457170.125962412008712.790693817413947310.4969695835577646212284

%H R. H. Hardin, <a href="/A231144/b231144.txt">Table of n, a(n) for n = 1..84</a>

%F Empirical for column k:

%F k=1: a(n) = 6*a(n-1) -11*a(n-3) +4*a(n-4)

%F k=2: [order 11]

%F k=3: [order 46]

%e Some solutions for n=1 k=4

%e ..0..2..1..0..1....0..1..0..1..2....0..1..0..1..0....0..2..0..2..1

%e ..1..1..0..2..0....2..0..2..1..2....2..0..2..2..1....0..1..1..2..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 04 2013