%I
%S 18,40,54,70,78,88,100,102,112,138,160,174,196,198,208,220,222,258,
%T 270,280,304,306,318,340,348,350,352,364,366,378,390,400,414,438,448,
%U 460,462,474,490,498,520,532,544,550,558,570,580,606,616,618,640,642,648
%N Initial members of abundant twins, i.e., values of k such that (k, k+2) are both abundant numbers.
%H Amiram Eldar, <a href="/A231086/b231086.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..5000 from Shyam Sunder Gupta)
%e 18, 20 are abundant, thus the smaller number is listed.
%p withnumtheory: select(n>sigma(n)>2*n and sigma(n+1)<2*(n+1) and sigma(n+2)>2*(n+2),[$1..700]); # _Muniru A Asiru_, Jun 24 2018
%t AbundantQ[n_] := DivisorSigma[1, n] > 2n; m = 0; a2 = {}; Do[If[AbundantQ[n], m = m + 1; If[m > 1, AppendTo[a2, n  2]], m = 0], {n, 2, 100000, 2}];a2
%t Module[{nn=650,sa},sa=Table[If[DivisorSigma[1,n]>2n,1,0],{n,nn}];Transpose[ SequencePosition[sa,{1,0,1}]]][[1]] (* The program uses the SequencePosition function from Mathematica version 10 *) (* _Harvey P. Dale_, May 20 2016 *)
%o (PARI) is(n)=sigma(n,1)>2 && sigma(n+2,1)>2 \\ _Charles R Greathouse IV_, Feb 21 2017
%o (GAP) A:=Filtered([1..700],n>Sigma(n)>2*n);; a:=List(Filtered([1..Length(A)1],i>A[i+1]=A[i]+2),j>A[j]); # _Muniru A Asiru_, Jun 24 2018
%Y Cf. A005101, A108926, A231088, A231089, A231090, A231092, A231093.
%K nonn
%O 1,1
%A _Shyam Sunder Gupta_, Nov 03 2013
