login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = Number of n X k 0..3 arrays x(i,j) with each element horizontally, vertically, diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4 and at least one element with value (x(i,j)-1) mod 4, and upper left element zero.
5

%I #6 Mar 15 2023 11:50:57

%S 0,0,0,0,6,0,0,22,22,0,0,200,328,200,0,0,1732,8696,8696,1732,0,0,

%T 14384,220970,741638,220970,14384,0,0,121696,5669980,66622532,

%U 66622532,5669980,121696,0,0,1027464,145756934,5943688666,20816992724,5943688666

%N T(n,k) = Number of n X k 0..3 arrays x(i,j) with each element horizontally, vertically, diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4 and at least one element with value (x(i,j)-1) mod 4, and upper left element zero.

%C Table starts

%C .0.......0..........0..............0................0................0

%C .0.......6.........22............200.............1732............14384

%C .0......22........328...........8696...........220970..........5669980

%C .0.....200.......8696.........741638.........66622532.......5943688666

%C .0....1732.....220970.......66622532......20816992724....6479894318198

%C .0...14384....5669980.....5943688666....6479894318198.6999441442491276

%C .0..121696..145756934...529115404280.2012129115093308

%C .0.1027464.3741811720.47219421549032

%H R. H. Hardin, <a href="/A230968/b230968.txt">Table of n, a(n) for n = 1..71</a>

%F Empirical for column k:

%F k=2: [linear recurrence order 8]

%F k=3: [order 37]

%e Some solutions for n=3, k=4

%e ..0..1..2..2....0..3..1..0....0..0..0..0....0..2..0..1....0..2..3..1

%e ..1..3..3..1....1..2..3..0....1..3..3..1....3..1..3..2....1..3..0..2

%e ..0..2..2..0....3..0..1..2....0..2..0..2....2..0..0..1....0..2..2..1

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_, Nov 02 2013