Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Dec 22 2020 03:54:19
%S 0,0,0,0,0,16,192,1472,12800,132352,1366016,14781952,178102272,
%T 2282645504,30639611904,440041603072,6720063012864,107722700685312,
%U 1818098902499328,32319047553515520,601556224722337792,11702621573275975680,237913839294912397312
%N Number of permutations of [n] with exactly one occurrence of the consecutive step pattern up, down, up, down.
%H Alois P. Heinz, <a href="/A230832/b230832.txt">Table of n, a(n) for n = 0..460</a>
%F a(n) ~ c * d^n * n! * n, where d = 0.87361286073825385348141673848..., c = 0.2252746... . - _Vaclav Kotesovec_, Aug 28 2014
%e a(5) = 16: 13254, 14253, 14352, 15243, 15342, 23154, 24153, 24351, 25143, 25341, 34152, 34251, 35142, 35241, 45132, 45231.
%e a(6) = 192: 124365, 125364, 125463, ..., 635241, 645132, 645231.
%e a(7) = 1472: 1235476, 1236475, 1236574, ..., 7635241, 7645132, 7645231.
%p b:= proc(u, o, t) option remember; `if`(t=9, 0,
%p `if`(u+o=0, `if`(t>4, 1, 0),
%p add(b(u-j, o+j-1, [1, 3, 1, 5, 7, 9, 7, 5][t]), j=1..u)+
%p add(b(u+j-1, o-j, [2, 2, 4, 2, 6, 8, 8, 8][t]), j=1..o)))
%p end:
%p a:= n-> b(n, 0, 1):
%p seq(a(n), n=0..25);
%t b[u_, o_, t_] := b[u, o, t] = If[t == 9, 0,
%t If[u + o == 0, If[t > 4, 1, 0],
%t Sum[b[u - j, o + j - 1, {1, 3, 1, 5, 7, 9, 7, 5}[[t]]], {j, 1, u}] +
%t Sum[b[u + j - 1, o - j, {2, 2, 4, 2, 6, 8, 8, 8}[[t]]], {j, 1, o}]]];
%t a[n_] := b[n, 0, 1];
%t a /@ Range[0, 25] (* after _Alois P. Heinz_ *)
%Y Column k=1 of A230797.
%K nonn
%O 0,6
%A _Alois P. Heinz_, Oct 30 2013