

A230508


Positive integers m with 2^m + p(m) prime, where p(.) is the partition function (A000041).


0



1, 3, 13, 14, 39, 51, 63, 146, 229, 261, 440, 587, 621, 636, 666, 1377, 2686, 3069, 3712, 13604
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

It seems that there are only finitely many primes of the form 2^m + p(m).


LINKS

Table of n, a(n) for n=1..20.


EXAMPLE

a(1) = 1 since 2^1 + p(1) = 2 + 1 = 3 is prime.


MATHEMATICA

n=0; Do[If[PrimeQ[2^m+PartitionsP[m]], n=n+1; Print[n, " ", m]], {m, 1, 10000}]


CROSSREFS

Cf. A000040, A000041, A000079, A236390.
Sequence in context: A224693 A043055 A101235 * A045233 A113487 A032623
Adjacent sequences: A230505 A230506 A230507 * A230509 A230510 A230511


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Jan 25 2014


STATUS

approved



