%I
%S 2,3,5,7,181,191,373,383,727,757,787,797,17971,19891,19991,76667,
%T 77977,78887,79997,1987891,1988891,1998991,3799973,3899983,3998993,
%U 7897987,7996997,9888889,9889889,9989899,199999991,768989867,779969977,779999977,798989897
%N Palindromic primes with strictly increasing sum of digits.
%C a(1)=2; a(n+1) is the smallest palindromic prime with sum of digits > sum of digits of a(n).
%H Shyam Sunder Gupta, <a href="/A230045/b230045.txt">Table of n, a(n) for n = 1..63</a>
%e a(6) = 191, sum of digits is 11; a(7) = 373, sum of digits is 13 and 13 > 11.
%t a = {}; t = 0; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z], s = Apply[Plus, IntegerDigits[z]]; If[s > t, t = s; AppendTo[a, z]]], {n, 10^5}]; a
%Y Cf. A002385, A061248.
%K nonn,base
%O 1,1
%A _Shyam Sunder Gupta_, Oct 06 2013
|