The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229819 Even bisection gives sequence a itself, n->a(2*(4*n+k)-1) gives k-th differences of a for k=1..4 with a(n)=n for n<2. 9

%I

%S 0,1,1,-1,1,-1,-1,7,1,0,-1,-2,-1,6,7,-14,1,-2,0,4,-1,-8,-2,14,-1,2,6,

%T -4,7,6,-14,0,1,-2,-2,2,0,6,4,-28,-1,0,-8,8,-2,-22,14,41,-1,8,2,-14,6,

%U 19,-4,-24,7,-6,6,5,-14,-5,0,5,1,-1,-2,0,-2,0,2,2,0

%N Even bisection gives sequence a itself, n->a(2*(4*n+k)-1) gives k-th differences of a for k=1..4 with a(n)=n for n<2.

%H Alois P. Heinz, <a href="/A229819/b229819.txt">Table of n, a(n) for n = 0..10000</a>

%F a(2*n) = a(n),

%F a(8*n+1) = a(n+1) - a(n),

%F a(8*n+3) = a(n+2) - 2*a(n+1) + a(n),

%F a(8*n+5) = a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n).

%F a(8*n+7) = a(n+4) - 4*a(n+3) + 6*a(n+2) - 4*a(n+1) + a(n).

%p a:= proc(n) option remember; local m, q, r;

%p m:= (irem(n, 8, 'q')+1)/2;

%p `if`(n<2, n, `if`(irem(n, 2, 'r')=0, a(r),

%p end:

%p seq(a(n), n=0..100);

%t a[n_] := a[n] = Module[{m, q, r, q2, r2}, {q, r} = QuotientRemainder[n, 8]; m = (r+1)/2; If[n<2, n, {q2, r2} = QuotientRemainder[n, 2]; If[r2 == 0, a[q2], Sum[a[q+m-j]*(-1)^j*Binomial[m, j], {j, 0, m}]]]]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Mar 08 2017, translated from Maple *)

%Y Cf. A005590, A229817, A229818, A229820, A229821, A229822, A229823, A229824, A229825.

%K sign,eigen

%O 0,8

%A _Alois P. Heinz_, Sep 30 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 08:07 EST 2020. Contains 331081 sequences. (Running on oeis4.)