%I
%S 50,6456,17404,32548,57677,102271,186396,354509,704530,1450667,
%T 3059672,6544921,14099310,30453719,65785684,141933029,305639306,
%U 656732227,1407958032,3011810033,6428914918,13695082991,29117602316,61795491133
%N Number of defective 4colorings of an n X 6 0..3 array connected horizontally, vertically, diagonally and antidiagonally with exactly two mistakes, and colors introduced in rowmajor 0..3 order.
%H R. H. Hardin, <a href="/A229753/b229753.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 9*a(n1)  33*a(n2) + 63*a(n3)  66*a(n4) + 36*a(n5)  8*a(n6) for n>11.
%F Empirical g.f.: x*(50 + 6006*x  39050*x^2 + 85810*x^3  64351*x^4  14894*x^5 + 35422*x^6  8491*x^7  3870*x^8  356*x^9 + 888*x^10) / ((1  x)^3*(1  2*x)^3).  _Colin Barker_, Sep 21 2018
%e Some solutions for n=3:
%e ..0..1..2..3..0..2....0..1..2..3..0..1....0..1..0..2..0..2....0..1..0..2..1..0
%e ..2..3..0..1..1..3....2..3..0..1..2..3....3..2..3..1..0..1....0..2..3..2..3..2
%e ..1..0..2..3..0..2....2..1..2..3..0..2....1..0..1..2..3..2....3..1..0..1..0..1
%Y Column 6 of A229755.
%K nonn
%O 1,1
%A _R. H. Hardin_, Sep 28 2013
