%I #22 Feb 24 2022 08:45:38
%S 2,11,59,359,2879,28799,345599,4838399,82252799,1480550399,
%T 29611007999,710664191999,18477268991999,554318069759999,
%U 17738178232319999,674050772828159999,28310132458782719999,1245645828186439679999,59790999752949104639999
%N Sum of all numbers n>=2 such that in their Fermi-Dirac representation every A050376-factor does not exceed A050376(n).
%C Or, the same, diminished on 1 the sum of Fermi-Dirac divisors of the number Product_{i=1..n} A050376(i). Note that the sequence of the first differences 2, 9, 48, 300, ... lists sums of all numbers such that the maximal A050376-factor in their Fermi-Dirac representation is A050376(n). Note also that the average of numbers n >= 2 with A050376-factors not exceeding A050376(n) is a(n)/(2^n-1). Thus the sequence of such averages begins 2, 11/3, 59/7, 359/15, ...
%C Prime terms are 2, 11, 59, 359, 2879, 345599, 4838399, ...
%H Peter J. C. Moses, <a href="/A228868/b228868.txt">Table of n, a(n) for n = 1..100</a>
%F a(n) = -1 + Product_{i=1..n} (A050376(i) + 1).
%e a(3) = 2 + 3 + 2*3 = 11.
%Y Cf. A050376.
%K nonn
%O 1,1
%A _Vladimir Shevelev_ and _Peter J. C. Moses_, Sep 06 2013