%I
%S 2,11,59,359,2879,28799,345599,4838399,82252799,1480550399,
%T 29611007999,710664191999,18477268991999,554318069759999,
%U 17738178232319999,674050772828159999,28310132458782719999,1245645828186439679999,59790999752949104639999
%N Sum of all numbers n>=2 such that in their FermiDirac representation every A050376factor does not exceed A050376(n).
%C Or, the same, diminished on 1 the sum of FermiDirac divisors of the number prod{i=1,...,n} A050376(i). Note that the sequence of the first differences 2, 9, 48, 300,... lists sums of all numbers such that the maximal A050376factor in their FermiDirac representation is A050376(n). Note also that the average of numbers n>=2 with A050376factors not exceeding A050376(n) is a(n)/(2^n1). Thus the sequence of such averages begins 2, 11/3, 59/7, 359/15,...
%C Prime terms are 2, 11, 59, 359, 2879, 345599, 4838399,...
%H Peter J. C. Moses, <a href="/A228868/b228868.txt">Table of n, a(n) for n = 1..100</a>
%F a(n) = prod{i=1,...,n}(A050376(i)+1)  1.
%e a(3) = 2 + 3 + 2*3 = 11.
%Y Cf. A050376.
%K nonn
%O 1,1
%A _Vladimir Shevelev_ and _Peter J. C. Moses_, Sep 06 2013
