%I
%S 32,89,2892,22060,362511,3835792,51557716,607251543,7672139244,
%T 93420773609,1159188543069,14247881349908,175944344684763,
%U 2167769734896816,26737779597736284,329618632980267413
%N Number of 6Xn binary arrays with top left element equal to 1 and no two ones adjacent horizontally or nw-se.
%C Row 6 of A228796
%H R. H. Hardin, <a href="/A228801/b228801.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +119*a(n-2) +397*a(n-3) -1395*a(n-4) -5213*a(n-5) +8797*a(n-6) +24443*a(n-7) -36756*a(n-8) -45888*a(n-9) +84092*a(n-10) +19388*a(n-11) -83412*a(n-12) +24912*a(n-13) +22741*a(n-14) -12257*a(n-15) -1459*a(n-16) +1607*a(n-17) -49*a(n-18) -71*a(n-19) +3*a(n-20) +a(n-21)
%e Some solutions for n=4
%e ..1..0..0..0....1..0..1..0....1..0..0..0....1..0..0..1....1..0..0..0
%e ..0..0..1..0....1..0..0..0....1..0..0..0....0..0..0..1....0..0..1..0
%e ..1..0..1..0....0..0..0..0....0..0..0..1....1..0..1..0....1..0..0..0
%e ..0..0..1..0....1..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0
%e ..1..0..0..0....1..0..1..0....0..1..0..0....0..0..0..0....0..0..1..0
%e ..1..0..0..1....0..0..0..0....1..0..0..1....0..0..0..0....0..0..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Sep 04 2013
|