The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228763 a(n) = 2^L(n) - 1, where L(n) is the n-th Lucas number (A000032). 0

%I #17 Sep 08 2022 08:46:05

%S 3,1,7,15,127,2047,262143,536870911,140737488355327,

%T 75557863725914323419135,10633823966279326983230456482242756607,

%U 803469022129495137770981046170581301261101496891396417650687

%N a(n) = 2^L(n) - 1, where L(n) is the n-th Lucas number (A000032).

%F a(n) = a(n-1) + a(n-2) + a(n-1) * a(n-2) for n>1, a(0)=3, a(1)=1.

%t Table[2^LucasL[n] - 1, {n, 0, 15}] (* _Bruno Berselli_, Sep 03 2013 *)

%o (Magma) [2^Lucas(n)-1: n in [0..15]]; // _Bruno Berselli_, Sep 03 2013

%o (PARI) a(n)=2^(fibonacci(n-1)+fibonacci(n+1))-1 \\ _Charles R Greathouse IV_, Sep 03 2013

%Y Cf. A000032, A063896.

%K nonn

%O 0,1

%A _Yeshwant Shivrai Valaulikar_, Sep 03 2013

%E More terms from _Bruno Berselli_, Sep 03 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 15:42 EDT 2024. Contains 374974 sequences. (Running on oeis4.)