login
Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=6.
4

%I #12 Jan 02 2023 12:30:49

%S 1,1,1,2,3,5,9,15,25,43,74,126,217,372,638,1096,1881,3230,5546,9524,

%T 16353,28083,48224,82811,142208,244204,419360,720144,1236670,2123670,

%U 3646879,6262611,10754485,18468174,31714525,54461873,93524824,160605817,275800867

%N Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=6.

%H Alois P. Heinz, <a href="/A228646/b228646.txt">Table of n, a(n) for n = 0..1000</a>

%H Paul D. Hanna et al., <a href="http://list.seqfan.eu/oldermail/seqfan/2013-July/011445.html">Formula Needed for a Family of Continued Fractions</a> and follow-up messages on the SeqFan list, Jul 28 2013

%t nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A228646 = col[6][[1 ;; nMax]] (* _Jean-François Alcover_, Nov 03 2016 *)

%Y Cf. A143064 (m=0), A227360 (m=2), A173173 (m=3), A227374 (m=4), A227375 (m=5), A228644 (m=7), A228645 (m=9).

%Y Column m=6 of A185646.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Aug 28 2013