OFFSET
0,2
LINKS
Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8; preprint, 2014.
FORMULA
G.f.: (1+x^2*C^5)/(1-2*x) where C is the Catalan number generating function (cf. A000108).
D-finite with recurrence: -(n+3)*(n-2)*a(n) +6*(n^2-2)*a(n-1) -4*n*(2*n-1)*a(n-2)=0. - R. J. Mathar, Aug 25 2013
a(n) -2*a(n-1) = A000344(n). - R. J. Mathar, Aug 25 2013
a(n) ~ 5 * 2^(2*n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 31 2014
EXAMPLE
When n=3 the five trees contribute as follows: UUUDDD 8; UUDDUD, UDUUDD,UUDUDD 2 each; and UDUDUD just 1.
MATHEMATICA
Table[FullSimplify[I*2^n - 5/2*Gamma[3+2*n] * HypergeometricPFQRegularized[{1, 3/2+n, 2+n}, {n, 5+n}, 2]], {n, 0, 20}] (* Vaclav Kotesovec, Jan 31 2014 *)
PROG
(PARI)
x = 'x + O('x^66);
C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
gf = (1+x^2*C^5)/(1-2*x);
Vec(gf) \\ Joerg Arndt, Aug 21 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Louis Shapiro, Aug 20 2013
STATUS
approved