login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228173 E.g.f. satisfies: A(x) = 1+x - exp(-A(x)^2). 1

%I

%S 1,2,12,108,1320,20280,374640,8072400,198465120,5475284640,

%T 167285321280,5600184004800,203602252613760,7978382871338880,

%U 334767145102790400,14952953514231532800,707221717016278464000,35242469168705967168000,1841491290250262851200000

%N E.g.f. satisfies: A(x) = 1+x - exp(-A(x)^2).

%C Note that a(30) is negative. - _Vaclav Kotesovec_, Sep 16 2013

%H Vaclav Kotesovec, <a href="/A228173/b228173.txt">Table of n, a(n) for n = 1..370</a>

%H Vaclav Kotesovec, <a href="/A228173/a228173.jpg">Graph of convergence to limit for 1000 terms</a>

%F E.g.f. A(x) satisfies:

%F (1) A(x - 1 + exp(-x^2)) = x.

%F (2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (1 - exp(-x^2))^n / n!.

%F (3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (1 - exp(-x^2))^n/x / n! ).

%F Lim sup n->infinity (|a(n)|/n!)^(1/n) = 1/abs(-1-(LambertW(-1/2)-1) / sqrt(-2*LambertW(-1/2))) = 3.19002880735268... - _Vaclav Kotesovec_, Jan 11 2014

%e E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 108*x^4/4! + 1320*x^5/5! +...

%e where

%e exp(-A(x)^2) = 1 - 2*x^2/2! - 12*x^3/3! - 108*x^4/4! - 1320*x^5/5! -...

%e The e.g.f. equals the series:

%e A(x) = x + (1 - exp(-x^2)) + d/dx (1 - exp(-x^2))^2/2! + d^2/dx^2 (1 - exp(-x^2))^3/3! + d^3/dx^3 (1 - exp(-x^2))^4/4! + d^4/dx^4 (1 - exp(-x^2))^5/5! +...

%e Also,

%e log(A(x)/x) = (1 - exp(-x^2))/x + d/dx (1 - exp(-x^2))^2/(2!*x) + d^2/dx^2 (1 - exp(-x^2))^3/(3!*x) + d^3/dx^3 (1 - exp(-x^2))^4/(4!*x) +...

%t Rest[CoefficientList[InverseSeries[Series[x-1+E^(-x^2),{x,0,20}],x],x]*Range[0,20]!] (* _Vaclav Kotesovec_, Sep 16 2013 *)

%o (PARI) {a(n)=n!*polcoeff(serreverse(x-1+exp(-x^2+x*O(x^n))), n)}

%o for(n=1, 25, print1(a(n), ", "))

%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

%o {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, (1 - exp(-x^2+x*O(x^n)))^m)/m!); n!*polcoeff(A, n)}

%o for(n=1, 25, print1(a(n), ", "))

%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

%o {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, (1 - exp(-x^2+x*O(x^n)))^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)}

%o for(n=1, 25, print1(a(n), ", "))

%Y Cf. A218652.

%K sign

%O 1,2

%A _Paul D. Hanna_, Aug 14 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 14:38 EST 2019. Contains 329865 sequences. (Running on oeis4.)