login
Dimensions in which nonzero Arf-Kervaire invariants exist.
0

%I #21 Jul 18 2015 11:26:43

%S 2,6,14,30,62

%N Dimensions in which nonzero Arf-Kervaire invariants exist.

%C Hill, Hopkins, and Ravenel (2009) proved that nonzero Arf-Kervaire invariants exist only in dimensions 2^n - 2 for n = 2, 3, 4, 5, 6, and possibly 7, that is, in dimensions 2, 6, 14, 30, 62 and possibly 126. Thus either the sequence is complete or it has one additional term.

%C Connections with string theory (see Google link) are speculative.

%H M. A. Hill, M. J. Hopkins and D. C. Ravenel, <a href="http://arxiv.org/abs/0908.3724">On the non-existence of elements of Kervaire invariant one</a>, arXiv:0908.3724 [math.AT], 2009-2015.

%H Links via Google, <a href="http://www.google.com/search?q=Hill,+Hopkins,+Ravenel+%22string+theory%22">Hill, Hopkins, Ravenel and string theory</a>

%H V. P. Snaith, <a href="http://www.ams.org/notices/201308/rnoti-p1040.pdf">A history of the Arf-Kervaire invariant problem</a>, Notices Amer. Math. Soc., 60 (No. 8, 2013), 1040-1047.

%F 2^n - 2 for n = 2, 3, 4, 5, 6.

%Y Cf. A228689, A000918.

%K nonn,fini,more

%O 2,1

%A _Jonathan Sondow_, Sep 01 2013