%I #19 Jun 04 2014 22:47:50
%S 11,2903,3533,3803,5197,9533,18973,24763,37321,73561,96953,113621,
%T 124777,129097,134837,139241,398341,830003,1100509,1585201,1661789,
%U 2211257,4541309,4871077,4897709,5340949,5958751,7393123,8185501,8744003,11485559,15343039,15343079
%N Primes p such that p - ssd(p) is the square of a prime, where ssd(k) is the sum of the squared decimal digits of k.
%H Charles R Greathouse IV, <a href="/A227785/b227785.txt">Table of n, a(n) for n = 1..2900</a>
%e 11 is a member since 11 - 2 = 3^2 where 3 is prime. 2903 is a member since 2903 - 94 = 53^2 where 53 is prime.
%p ssd:= n->add(d^2,d=convert(n,base,10));
%p S:= select(t -> type(sqrt(t - ssd(t)),prime), [seq(ithprime(j),j=1..10^5)]);
%t fQ[n_] := PrimeQ[ Sqrt[ n - Total[ IntegerDigits[ n]^2]]]; p = 2; lst = {}; While[p < 15500000, If[ fQ@ p, AppendTo[ lst, p]]; p = NextPrime@ p]; lst (* _Robert G. Wilson v_, Jun 01 2014 *)
%o (PARI) ssd(n)=my(d=digits(n));sum(i=1,#d,d[i]^2)
%o v=List();forprime(p=2,1e5,if(issquare(p-ssd(p),&t) && isprime(t), listput(v,p))); Vec(v)
%Y Subsequence of A119449. ssd(n) = A003132(n).
%K nonn,base
%O 1,1
%A Underwood Dudley, _Will Gosnell_, _Charles R Greathouse IV_, and _Robert Israel_, Aug 09 2013