login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227454 Expansion of q * (f(q^9) / f(q))^3 in powers of q where f() is a Ramanujan theta function. 35

%I

%S 1,-3,9,-22,51,-108,221,-429,810,-1476,2631,-4572,7802,-13056,21519,

%T -34918,55935,-88452,138332,-213990,327852,-497592,748833,-1117692,

%U 1655719,-2434938,3556791,-5161808,7445631,-10677096,15226658,-21599469,30485268,-42817788

%N Expansion of q * (f(q^9) / f(q))^3 in powers of q where f() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Zagier (2009) denotes the g.f. as t(z) in Case B which is associated with F(t) the g.f. of A006077.

%D D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

%H Seiichi Manyama, <a href="/A227454/b227454.txt">Table of n, a(n) for n = 1..10000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%H D. Zagier, <a href="http://people.mpim-bonn.mpg.de/zagier/files/tex/AperylikeRecEqs/fulltext.pdf">Integral solutions of Apery-like recurrence equations</a>.

%F Expansion of c(-q^3) / (-3 * b(-q)) in powers of q where b(), c() are cubic AGM theta functions.

%F Expansion of (eta(q) * eta(q^4) * eta(q^18)^3 / (eta(q^2)^3 * eta(q^9) * eta(q^36)))^3 in powers of q.

%F Euler transform of period 36 sequence [ -3, 6, -3, 3, -3, 6, -3, 3, 0, 6, -3, 3, -3, 6, -3, 3, -3, 0, -3, 3, -3, 6, -3, 3, -3, 6, 0, 3, -3, 6, -3, 3, -3, 6, -3, 0, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/27) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A227498.

%F G.f. t(q) satisfies f(q) = F(t(q)) where F() is the g.f. of A006077 and f() is the g.f. of A226535

%F G.f.: x * (Product_{k>0} (1 - (-x)^(9*k)) / (1 - (-x)^k))^3.

%F a(n) = -(-1)^n * A121589(n).

%e G.f. = q - 3*q^2 + 9*q^3 - 22*q^4 + 51*q^5 - 108*q^6 + 221*q^7 - 429*q^8 + ...

%t a[ n_] := SeriesCoefficient[ q (QPochhammer[ -q^9] / QPochhammer[ -q])^3, {q, 0, n}]

%o (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) * eta(x^18 + A)^3 / (eta(x^2 + A)^3 * eta(x^9 + A) * eta(x^36 + A)))^3, n))}

%Y Cf. A006077, A121589, A226535, A227498.

%Y The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

%K sign

%O 1,2

%A _Michael Somos_, Sep 22 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 05:11 EDT 2021. Contains 343072 sequences. (Running on oeis4.)