%I
%S 5,50,353,2201,11932,57146,244818,951917,3403038,11297855,35123154,
%T 102968348,286360987,759331583,1928166887,4706232142,11076831313,
%U 25210805133,55622829033,119222502647,248739253915,506020952898
%N Number of nX4 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X5 binary array having a sum of two or less, with rows and columns of the latter in lexicographically nondecreasing order
%C Column 4 of A227263
%H R. H. Hardin, <a href="/A227261/b227261.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/1689515283456000)*n^19 + (43/1067062284288000)*n^18 + (1/1097800704000)*n^17 + (1/24908083200)*n^16 + (2161/2615348736000)*n^15 + (7723/10461394944000)*n^14 + (76931/201180672000)*n^13 + (38351/48283361280)*n^12 - (9767641/402361344000)*n^11 + (9434683/6967296000)*n^10 - (3668820107/402361344000)*n^9 - (5124736597/80472268800)*n^8 + (150774753091/72648576000)*n^7 - (42587741190289/3923023104000)*n^6 - (18276563116219/163459296000)*n^5 + (6577553955799/3113510400)*n^4 - (743180805841567/51459408000)*n^3 + (63341814516853/1286485200)*n^2 - (326223749821/4476780)*n + 17722 for n>9
%e Some solutions for n=4
%e ..1..0..0..0....1..1..1..0....1..1..0..0....1..1..1..0....1..1..1..1
%e ..1..1..1..0....1..1..0..0....1..0..0..0....1..1..1..0....1..1..1..0
%e ..1..1..1..1....1..0..0..0....1..0..1..1....1..1..1..0....0..0..0..0
%e ..1..1..1..1....1..1..0..0....1..0..1..1....1..0..1..1....0..0..0..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Jul 04 2013
|