login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX4 binary arrays indicating whether each 2X2 subblock of a larger binary array has lexicographically increasing rows and columns, for some larger (n+1)X5 binary array with rows and columns of the latter in lexicographically nondecreasing order
1

%I #4 Jun 30 2013 14:12:17

%S 11,62,302,1339,5517,21335,77706,267130,868999,2683571,7894237,

%T 22199557,59882610,155443180,389435848,944177113,2220593929,

%U 5077160511,11307063564,24570317758,52177373347,108436508850,220822419206

%N Number of nX4 binary arrays indicating whether each 2X2 subblock of a larger binary array has lexicographically increasing rows and columns, for some larger (n+1)X5 binary array with rows and columns of the latter in lexicographically nondecreasing order

%C Column 4 of A227089

%H R. H. Hardin, <a href="/A227087/b227087.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (1/25852016738884976640000)*n^23 + (1/562000363888803840000)*n^22 + (1/8515157028618240000)*n^21 + (1/132703745900544000)*n^20 + (3011/14597412049059840000)*n^19 + (199/21341245685760000)*n^18 + (294787/1344498478202880000)*n^17 + (102919/15817629155328000)*n^16 + (1078127/11716762337280000)*n^15 + (62248451/22596613079040000)*n^14 + (2676107873/124281371934720000)*n^13 + (666103729/1274680737792000)*n^12 + (817147686029/316352583106560000)*n^11 + (124912409179/1797457858560000)*n^10 - (2789045615843/26362715258880000)*n^9 + (1628096767483/282457663488000)*n^8 - (543081878439151/48017802792960000)*n^7 + (42719702707217/250092722880000)*n^6 - (48939011143167373/177399104762880000)*n^5 + (390838159073513/147832587302400)*n^4 - (1242236984135201/542052820108800)*n^3 + (3097267852537/403313110200)*n^2 + (99388331/47805615)*n + 1

%e Some solutions for n=4

%e ..0..1..0..0....0..1..1..0....0..1..1..0....0..0..0..0....0..0..0..0

%e ..0..1..0..0....1..1..0..0....0..0..0..1....0..0..1..0....1..0..1..0

%e ..0..0..1..0....0..0..1..0....1..1..0..0....1..0..1..0....1..0..0..0

%e ..0..0..0..1....1..0..0..0....1..0..0..0....0..0..0..1....0..0..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Jun 30 2013