login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227081 Row sums of A124576. 1

%I

%S 1,2,8,40,212,1152,6360,35520,200132,1135456,6478088,37128896,

%T 213617704,1233014720,7136819376,41408161920,240758343684,

%U 1402436532576,8182797500328,47814708577728,279768031296312,1638915078384960,9611453035886160

%N Row sums of A124576.

%C The offset is chosen following the Deleham offset in A124576, not according to the less systematic offset in the definition.

%H Vincenzo Librandi, <a href="/A227081/b227081.txt">Table of n, a(n) for n = 0..200</a>

%F Conjecture: 3*n*a(n) +2*(-13*n+9)*a(n-1) +4*(13*n-21)*a(n-2) +24*(-n+2)*a(n-3)=0.

%F a(n) ~ 2^(n-3/2)*3^(n+1/2)/sqrt(Pi*n). - _Vaclav Kotesovec_, Jul 06 2013

%F G.f.: 1/(6*x -1 +2*sqrt((2*x-1)*(6*x-1))). - _Vaclav Kotesovec_, Jul 06 2013

%p AA := proc(n,k,x,y)

%p option remember;

%p if k <0 or k > n then

%p 0 ;

%p elif n = 0 then

%p 1;

%p elif k = 0 then

%p x*procname(n-1,k,x,y)+procname(n-1,1,x,y) ;

%p else

%p procname(n-1,k-1,x,y)+y*procname(n-1,k,x,y)+procname(n-1,k+1,x,y) ;

%p end if;

%p end proc:

%p seq(add( AA(n,k,1,4),k=0..n),n=0..30) ;

%t CoefficientList[Series[1/(6*x-1+2*Sqrt[(2*x-1)*(6*x-1)]), {x, 0, 30}], x] (* _Vaclav Kotesovec_, Jul 06 2013 *)

%o (PARI) x='x+O('x^30); Vec(1/(6*x -1 +2*sqrt((2*x-1)*(6*x-1)))) \\ _G. C. Greubel_, Nov 19 2018

%o (MAGMA) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/(6*x -1 +2*Sqrt((2*x-1)*(6*x-1))) )); // _G. C. Greubel_, Nov 19 2018

%o (Sage) s= (1/(6*x -1 +2*sqrt((2*x-1)*(6*x-1)))).series(x,30); s.coefficients(x, sparse=False) # _G. C. Greubel_, Nov 19 2018

%K nonn

%O 0,2

%A _R. J. Mathar_, Jun 30 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 00:32 EST 2019. Contains 329871 sequences. (Running on oeis4.)