login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227009 Irregular triangle read by rows: T(n,k) is the number of partitions of an n X n square lattice into squares that contain k nodes unconnected to any of their neighbors, considering only the number of parts. 2

%I #24 Oct 27 2023 22:06:38

%S 1,1,1,1,1,0,0,1,1,1,1,1,2,0,0,0,0,1,1,1,1,1,2,1,1,1,0,1,0,0,0,0,0,0,

%T 1,1,1,1,1,2,2,2,2,3,4,2,2,2,2,1,0,2,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,

%U 2,3,4,3,3,4,4,4,3,4,3,2,2,2,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1

%N Irregular triangle read by rows: T(n,k) is the number of partitions of an n X n square lattice into squares that contain k nodes unconnected to any of their neighbors, considering only the number of parts.

%C The n-th row contains (n-1)^2 + 1 elements.

%C The irregular triangle is shown below.

%C \ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...

%C n

%C 1 1

%C 2 1 1

%C 3 1 1 0 0 1

%C 4 1 1 1 1 2 0 0 0 0 1

%C 5 1 1 1 1 2 1 1 1 0 1 0 0 0 0 0 0 1

%C 6 1 1 1 1 2 2 2 2 3 4 2 2 2 2 1 0 2 0 0 ...

%C 7 1 1 1 1 2 2 2 2 3 4 3 3 4 4 4 3 4 3 2 ...

%H Alois P. Heinz, <a href="/A227009/b227009.txt">Rows n = 1..13, flattened</a> (Rows n = 1..7 from Christopher Hunt Gribble)

%F It appears that T(n,k) = T(n-1,k), n odd, n > 1 and k = 0..(n-1)^2/4.

%F Sum_{k=0..(n-1)^2} T(n,k) = A034295(n).

%e For n = 6, there are 3 partitions that contain 8 isolated nodes, so T(6,8) = 3.

%e An m X m square contains (m-1)^2 isolated nodes.

%e Consider that each partition is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors. Then the 3 partitions are:

%e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

%e 1 0 1 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1

%e 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 0 1

%e 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

%e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

%e 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1

%e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

%p b:= proc(n, l) option remember; local i, k, s, t;

%p if max(l[])>n then {} elif n=0 or l=[] then {0}

%p elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))

%p else for k do if l[k]=0 then break fi od; s:={};

%p for i from k to nops(l) while l[i]=0 do s:=s union

%p map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,

%p 1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))

%p od; s

%p fi

%p end:

%p T:= n-> (w->seq(coeff(w, z, h), h=0..(n-1)^2))(add(z^add(

%p coeff(p, x, i)*(i-1)^2, i=2..degree(p)), p=b(n, [0$n]))):

%p seq(T(n), n=1..9); # _Alois P. Heinz_, Jun 27 2013

%t b[n_, l_List] := b[n, l] = Module[{i, k , s, t}, Which[Max[l] > n, {}, n == 0 || l == {}, {0}, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, For[k = 1, k <= Length[l], k++, If[l[[k]] == 0, Break[]]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[# + x^(1+i-k)&, b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; Length[l]]]]]]]; s]]; T[n_] := Function[w, Table[Coefficient[w, z, h], {h, 0, (n-1)^2}]][Sum[ z^Sum[Coefficient[p, x, i]*(i-1)^2, {i, 2, Exponent[p, x]}], {p, b[n, Array[0&, n]]}]]; Table[T[n], {n, 1, 9}] // Flatten (* _Jean-François Alcover_, Jan 24 2016, after _Alois P. Heinz_ *)

%Y Cf. A034295.

%K nonn,tabf

%O 1,13

%A _Christopher Hunt Gribble_, Jun 27 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 21:09 EDT 2024. Contains 371798 sequences. (Running on oeis4.)