login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

P_n(n+1) where P_n(x) is the polynomial of degree n-1 which satisfies P_n(i) = i^i for i = 1,...,n.
1

%I #12 Nov 19 2013 14:18:00

%S 1,7,70,877,13316,237799,4885980,113566121,2946476764,84417530491,

%T 2647176188372,90183424037293,3316840864313484,130985236211745959,

%U 5528094465439087876,248308899812296990033,11827417687501017074876,595470029978391175571923

%N P_n(n+1) where P_n(x) is the polynomial of degree n-1 which satisfies P_n(i) = i^i for i = 1,...,n.

%H Alois P. Heinz, <a href="/A226805/b226805.txt">Table of n, a(n) for n = 1..100</a>

%e P_3(x) = 18 - 27*x + 10*x^2; a(3) = P_3(3+1) = 70.

%t P[n_][x_] = Sum[a[i]*x^i, {i, 0, n - 1}];ecu[n_] := Table[P[n][i] == i^i, {i, 1, n}];PP[n_][x_] := P[n][x] /. Solve[ecu[n]][[1]];Table[PP[i][i + 1], {i, 1, 22}]

%t a[n_] := InterpolatingPolynomial[Table[{i, i^i}, {i, n}], n+1]; Array[a, 20] (* _Giovanni Resta_, Jun 18 2013 *)

%o (PARI) a(n)=subst(polinterpolate(vector(n,i,i^i)),'x,n+1) \\ _Charles R Greathouse IV_, Nov 19 2013

%Y Cf. A140119, A140118, A126130, A000312.

%K nonn

%O 1,2

%A _José María Grau Ribas_, Jun 18 2013