%I #4 Jun 15 2013 14:12:56
%S 3,9,9,25,71,25,67,427,427,67,181,2393,4671,2393,181,491,13691,49019,
%T 49019,13691,491,1331,80043,539703,977939,539703,80043,1331,3607,
%U 469273,6045209,20577215,20577215,6045209,469273,3607,9775,2739433,67402167
%N T(n,k)=Number of nXk (-1,0,1) arrays of determinants of 2X2 subblocks of some (n+1)X(k+1) binary array
%C Table starts
%C ....3........9.........25............67..............181.................491
%C ....9.......71........427..........2393............13691...............80043
%C ...25......427.......4671.........49019...........539703.............6045209
%C ...67.....2393......49019........977939.........20577215...........439030021
%C ..181....13691.....539703......20577215........833949273.........34404755041
%C ..491....80043....6045209.....439030021......34404755041.......2753775365011
%C .1331...469273...67402167....9326184515....1412775737517.....219013376708219
%C .3607..2739433..748987305..197633166633...57827217804729...17350805966693235
%C .9775.15958607.8323819069.4188392176965.2366890987279579.1374728293480549343
%H R. H. Hardin, <a href="/A226717/b226717.txt">Table of n, a(n) for n = 1..112</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1) +a(n-2) +2*a(n-3) +a(n-4) +a(n-5)
%F k=2: [order 16]
%F k=3: [order 42]
%e Some solutions for n=3 k=4
%e ..0.-1..1.-1....0..0..0..0....1.-1.-1..1....0..1..1.-1....1..1..0..0
%e ..0..0..0.-1....0..1.-1..0....0..1..1.-1....0..0..0..0...-1..0..0..0
%e ..0.-1..1..1...-1.-1..1..1....0.-1..1..0....0.-1..1..0...-1..1..0..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Jun 15 2013