OFFSET
0,2
LINKS
FORMULA
a(n) = S(n,4098)+ S(n-1,4098), n>=0, with the Chebyshev S-polynomials (A049310). 4098 = 17*241 is the smallest positive integer x solution of x^2 - 41*y^2 = +4 with y also positive.
O.g.f.: (1 + x)/(1 - 4098*x + x^2).
a(n) = 4098*a(n-1) - a(n-2), a(-1) = -1 , a(0) = 1.
EXAMPLE
Pell n=0: 32^2 - 41*5^2 = -1.
Pell n=1: (32*4099)^2 - 41*(5*4097)^2 = -1.
MATHEMATICA
LinearRecurrence[{4098, -1}, {1, 4099}, 20] (* Harvey P. Dale, Sep 23 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 20 2013
STATUS
approved