%I #7 Jun 27 2013 12:06:28
%S 1,11,23,29,5,247,47,229,13,361,359,517,481,1669,485,1843,295,269,233,
%T 355,2509,1399,431,943,1991,4715,7469,3323,1753,2777,781,2347,1201,
%U 4741,9233,12607,6559,6721,4879,2359,5531,1805,11773,11113,6755,8861,5897,30079
%N Smallest positive integer k (or 0 if no such k) with conjecturally exactly n primitive cycles of positive integers under iteration by the Collatz-like 3x+k function.
%C A cycle is called primitive if its elements are not a common multiple of the elements of another cycle.
%C The 3x+k function T_k is defined by T_k(x) = x/2 if x is even, (3x+k)/2 if x is odd, where k is odd.
%C For primitive cycles, GCD(k,6)=1.
%C Belaga and Mignotte (2000, p.19) conjectured that the number of primitive cycles attains all positive integer values.
%H Geoffrey H. Morley, <a href="/A226662/b226662.txt">Table of n, a(n) for n = 1..189</a>
%H E. G. Belaga and M. Mignotte, <a href="http://hal.archives-ouvertes.fr/hal-00129656">Cyclic Structure of Dynamical Systems Associated with 3x+d Extensions of Collatz Problem</a>, Preprint math. 2000/17, Univ. Louis Pasteur, Strasbourg (2000).
%Y Cf. A226613, A226678.
%K nonn
%O 1,2
%A _Geoffrey H. Morley_, Jun 25 2013