

A226497


The number of primes of the form i^2+j^4 (A028916) <= 10^n.


3



2, 6, 28, 121, 583, 2724, 13175, 64551, 322110, 1621929, 8254127
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Even if a prime has more than one representation in the form i^2+j^4, it is only counted once.
Iwaniec and Friedlander have proved there is infinity of the primes of the form i^2+j^4.


LINKS

Table of n, a(n) for n=1..11.


MATHEMATICA

mx = 2^40; lst = {}; Do[a = i^2 + j^4; If[ PrimeQ[a], AppendTo[lst, a]], {i, Sqrt[mx]}, {j, Sqrt[Sqrt[mx  i^2]]}]; Table[ Length@ Select[ Union@ lst, # < 10^n &], {n, 12}]


CROSSREFS

Cf. A028916, A226495, A226496 & A226498.
Sequence in context: A089748 A047125 A189238 * A307523 A065577 A227294
Adjacent sequences: A226494 A226495 A226496 * A226498 A226499 A226500


KEYWORD

nonn


AUTHOR

Marek Wolf) and Robert G. Wilson v, Jun 09 2013


STATUS

approved



