Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #63 Sep 08 2022 08:46:05
%S 15,21,27,33,35,39,45,51,55,57,63,65,69,75,77,81,85,87,91,93,95,99,
%T 105,111,115,117,119,123,125,129,133,135,141,143,145,147,153,155,159,
%U 161,165,171,175,177,183,185,187,189,195,201,203,205,207,209,213,215,217
%N Odd composite numbers that are not squares of primes.
%C Numbers that are in A071904 (odd composite numbers) but not in A001248 (squares of primes).
%C First differs from its subsequence A082686 in a(16)=81 which is not in A082686. More precisely, A226025 \ A082686 = A062532 \ {1} = A014076^2 \ {1}. - _M. F. Hasler_, Oct 20 2013
%C Odd numbers that are greater than the square of their least prime factor - _Odimar Fabeny_, Sep 08 2014
%H Arkadiusz Wesolowski, <a href="/A226025/b226025.txt">Table of n, a(n) for n = 1..10000</a>
%F A226025 = { odd x>1 | A100995(x) = 0 or A100995(x) > 2 }. - _M. F. Hasler_, Oct 20 2013
%p select(n -> not(isprime(n)) and (not(issqr(n)) or not(isprime(sqrt(n)))), [seq(2*i+1,i=1..1000)]); # _Robert Israel_, Sep 08 2014
%t Select[Range[3, 217, 2], ! PrimeQ[#] && ! PrimeQ@Sqrt[#] &]
%t r = Prime@Range[2, 6]^2; Complement[Select[Range[3, Last[r] - 2, 2], ! PrimeQ[#] &], Most[r]]
%t Select[Range[3,251,2],NoneTrue[{#,Sqrt[#]},PrimeQ]&] (* _Harvey P. Dale_, Sep 06 2021 *)
%o (Magma) [n: n in [3..217 by 2] | not IsPrime(n) and not IsSquare(n) or IsSquare(n) and not IsPrime(Floor(n^(1/2)))]
%o (Haskell)
%o a226025 n = a226025_list !! (n-1)
%o a226025_list = filter ((/= 2) . a100995) a071904_list
%o -- _Reinhard Zumkeller_, Jun 15 2013
%o (PARI) is_A226025(n)={bittest(n,0)&&!isprime(n,0)&&!(issquare(n)&&isprime(sqrtint(n)))&&n>1} \\ - _M. F. Hasler_, Oct 20 2013
%Y Subsequence of A071904. Cf. A226603.
%K nonn
%O 1,1
%A _Arkadiusz Wesolowski_, Jun 07 2013