%I #4 May 20 2013 06:37:36
%S 2,4,4,7,12,7,11,33,33,11,16,78,145,78,16,22,162,545,545,162,22,29,
%T 304,1770,3459,1770,304,29,37,527,5052,19270,19270,5052,527,37,46,858,
%U 12910,93428,193122,93428,12910,858,46,56,1328,30055,396804,1706655,1706655
%N T(n,k)=Number of nXk binary arrays whose sum with another nXk binary array containing no more than a single 1 has rows and columns in lexicographically nondecreasing order
%C Table starts
%C ..2....4.....7......11........16..........22............29..............37
%C ..4...12....33......78.......162.........304...........527.............858
%C ..7...33...145.....545......1770........5052.........12910...........30055
%C .11...78...545....3459.....19270.......93428........396804.........1495926
%C .16..162..1770...19270....193122.....1706655......13135919........88428634
%C .22..304..5052...93428...1706655....28401254.....415506534......5301203235
%C .29..527.12910..396804..13135919...415506534...11798042714....293929504271
%C .37..858.30055.1495926..88428634..5301203235..293929504271..14479422646045
%C .46.1328.64701.5079770.526448417.59290115703.6410647528344.626694049293680
%H R. H. Hardin, <a href="/A225900/b225900.txt">Table of n, a(n) for n = 1..199</a>
%F Empirical: columns k=1..6 are polynomials in n of degree 2^k
%e Some solutions for n=3 k=4
%e ..0..0..1..1....0..1..1..1....0..0..0..0....0..0..0..1....0..0..1..0
%e ..0..1..0..0....1..0..0..0....0..1..1..1....0..1..0..1....0..1..0..1
%e ..1..1..1..1....1..0..1..1....0..1..1..1....0..1..1..0....1..1..0..1
%Y Column 1 is A000124
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ May 20 2013