%I #4 May 20 2013 06:31:35
%S 11,78,545,3459,19270,93428,396804,1495926,5079770,15751596,45136888,
%T 120738965,304047638,725911911,1652919000,3607621216,7579528833,
%U 15385065750,30266189863,57863160815,107762341802,195911924170
%N Number of nX4 binary arrays whose sum with another nX4 binary array containing no more than a single 1 has rows and columns in lexicographically nondecreasing order
%C Column 4 of A225900
%H R. H. Hardin, <a href="/A225896/b225896.txt">Table of n, a(n) for n = 1..169</a>
%F Empirical: a(n) = (1/653837184000)*n^16 + (29/186810624000)*n^15 + (71/10059033600)*n^14 + (497/2668723200)*n^13 + (11441/3592512000)*n^12 + (133949/3592512000)*n^11 + (139831/457228800)*n^10 + (227729/130636800)*n^9 + (34734211/4572288000)*n^8 + (43988369/1306368000)*n^7 + (227051569/1437004800)*n^6 + (222061289/718502400)*n^5 + (62570170547/54486432000)*n^4 + (837269/1001000)*n^3 + (36008363/5821200)*n^2 - (302873/180180)*n + 4
%e Some solutions for n=3
%e ..0..0..0..1....0..0..0..1....0..0..1..0....0..0..0..1....0..0..0..0
%e ..1..1..0..0....0..0..0..1....0..0..1..1....0..0..1..1....0..0..1..1
%e ..1..1..1..0....0..1..0..0....0..0..1..1....1..1..0..1....0..1..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_ May 20 2013
|