%I #19 Apr 25 2016 12:00:15
%S 1,2,3,4,5,12,7,8,19,10,11,6,25,56,15,16,71,38,9,20,21,44,23,48,27,50,
%T 51,112,113,240,31,32,271,142,143,76,77,36,79,40,83,42,43,22,89,184,
%U 47,24,391,54,13,100,101,204,103,14,451,226,227,120,481,992,63
%N If the run lengths of the binary representation of n are [1+r_1, 1+r_2, 1+r_3, ..., 1+r_k], then those of a(n) are [1+(r_1), 1+(r_1 XOR r_2), 1+(r_2 XOR r_3), ..., 1+(r_{k-1} XOR r_k)], where XOR denotes the XOR binary operator.
%C Inverse permutation of A227987.
%H Paul Tek, <a href="/A225607/b225607.txt">Table of n, a(n) for n = 1..10000</a>
%H Paul Tek, <a href="/A225607/a225607.txt">PERL program for this sequence</a>
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e For n=28927:
%e (1) binary representation of n = "111000011111111",
%e (2) run lengths of n = [1+2,1+3,1+7],
%e (3) run lengths of a(n) = [1+2,1+(2 XOR 3),1+(3 XOR 7)]=[3,2,5],
%e (4) binary representation of a(n) = "1110011111",
%e (5) a(n) = 927.
%o (Perl) See Link section.
%Y Cf. A227987, A226569.
%K nonn,base
%O 1,2
%A _Paul Tek_, Aug 06 2013